Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.244
Filtrar
1.
Cell Chem Biol ; 31(4): 743-759.e8, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38593807

RESUMO

Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.


Assuntos
Antimaláricos , Malária , Metilaminas , Quinolinas , Humanos , Antimaláricos/química , Malária/tratamento farmacológico , Fenóis/uso terapêutico , Quinolinas/farmacologia , Quinolinas/metabolismo , Desenvolvimento de Medicamentos
2.
Cell Stress Chaperones ; 29(2): 326-337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518861

RESUMO

Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.


Assuntos
Antimaláricos , Malária , Humanos , Proteínas de Choque Térmico/metabolismo , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Protozoários/metabolismo
3.
Bioorg Chem ; 146: 107307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537337

RESUMO

In this study, two linear and corresponding cyclic heptapeptide versions of mortiamide A-lugdunin hybrids were designed and synthesized by integrating an anti-malarial peptide epitope derived from Mortiamide A, combined with four residues known for their membrane interactions. Using this synthetic strategy, the sequence of mortiamide A was partly re-engineered with an epitope sequence of lugdunin along with an amino acid replacement using all-L and D/L configurations. Importantly, the re-engineered cyclic mortiamides with all-L (3) and D/L (4) configurations exhibited promising anti-malarial activities against the P. falciparum drug-sensitive TM4/8 strain with half-maximal inhibitory concentration (IC50) values of 6.2 ± 0.5 and 4.8 ± 0.1 µM, respectively. Additionally, they exhibited anti-malarial activities against the P. falciparum multidrug-resistant V1/S strain with IC50 values of 5.0 ± 2.6 and 3.7 ± 0.7 µM, respectively. Interestingly, a linear re-engineered mortiamide with D/L configuration (2) exhibited promising anti-malarial activities, surpassing those of the re-engineered cyclic mortiamides (3 and 4), against both the P. falciparum sensitive TM4/8 and multidrug-resistant V1/S strains with IC50 values of 3.6 ± 0.5 and 2.8 ± 0.7 µM (IC50 of Mortiamide A = 7.85 ± 0.97, 5.31 ± 0.24 µM against 3D7 and Dd2 strains) without any cytotoxicity at >100 µM. The presence of D/L forms in a linear structure significantly impacted the anti-malarial activity against both the P. falciparum sensitive TM4/8 strain and the multidrug-resistant V1/S strain.


Assuntos
Antimaláricos , Malária Falciparum , Peptídeos Cíclicos , Plasmodium , Tiazolidinas , Humanos , Antimaláricos/química , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Epitopos
4.
Eur J Med Chem ; 270: 116354, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554474

RESUMO

Malaria is a devastating disease that causes significant morbidity worldwide. The development of new antimalarial chemotypes is urgently needed because of the emergence of resistance to frontline therapies. Independent phenotypic screening campaigns against the Plasmodium asexual parasite, including our own, identified the aryl amino acetamide hit scaffold. In a prior study, we identified the STAR-related lipid transfer protein (PfSTART1) as the molecular target of this antimalarial chemotype. In this study, we combined structural elements from the different aryl acetamide hit subtypes and explored the structure-activity relationship. It was shown that the inclusion of an endocyclic nitrogen, to generate the tool compound WJM-715, improved aqueous solubility and modestly improved metabolic stability in rat hepatocytes. Metabolic stability in human liver microsomes remains a challenge for future development of the aryl acetamide class, which was underscored by modest systemic exposure and a short half-life in mice. The optimized aryl acetamide analogs were cross resistant to parasites with mutations in PfSTART1, but not to other drug-resistant mutations, and showed potent binding to recombinant PfSTART1 by biophysical analysis, further supporting PfSTART1 as the likely molecular target. The optimized aryl acetamide analogue, WJM-715 will be a useful tool for further investigating the druggability of PfSTART1 across the lifecycle of the malaria parasite.


Assuntos
Antimaláricos , Proteínas de Transporte , Malária Falciparum , Malária , Ratos , Camundongos , Humanos , Animais , Antimaláricos/química , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Acetamidas/farmacologia , Lipídeos
5.
Eur J Med Chem ; 269: 116308, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503166

RESUMO

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 µM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 µM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Subtilisina/metabolismo , Sequência de Aminoácidos , Plasmodium falciparum/metabolismo , Peptídeos , Malária Falciparum/parasitologia , Serina Proteases/metabolismo , Relação Estrutura-Atividade , Antimaláricos/farmacologia , Antimaláricos/química , Proteínas de Protozoários , Mamíferos/metabolismo
6.
Bioorg Med Chem Lett ; 103: 129700, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479483

RESUMO

This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH2) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.) and oral routes in Swiss mice. Ether derivative 13c was the most active compound by i.m. route, it has shown 100 % protection at the dose of 12 mg/kg × 4 days and showed 100 % clearance of parasitaemia on day 4 at dose of 6 mg/kg. Amine 11a, ether derivatives 13d, 13e and ether 15a also showed promising antimalarial activity. ß-Arteether gave 100 % protection at the dose of 48 mg/kg × 4 days and 20 % protection at 24 mg/kg × 4 days dose by oral route, while it showed 100 % protection at 6 mg/kg × 4 days and no protection at 3 mg/kg × 4 days by i.m. route.


Assuntos
Antimaláricos , Plasmodium yoelii , Animais , Camundongos , Antimaláricos/química , Éter/farmacologia , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Etil-Éteres/farmacologia , Éteres/farmacologia
7.
Bioorg Med Chem ; 102: 117654, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452406

RESUMO

We present investigations about the mechanism of action of a previously reported 4-anilino-2-trichloromethylquinazoline antiplasmodial hit-compound (Hit A), which did not share a common mechanism of action with established commercial antimalarials and presented a stage-specific effect on the erythrocytic cycle of P. falciparum at 8 < t < 16 h. The target of Hit A was searched by immobilising the molecule on a solid support via a linker and performing affinity chromatography on a plasmodial lysate. Several anchoring positions of the linker (6,7 and 3') and PEG-type linkers were assessed, to obtain a linked-hit molecule displaying in vitro antiplasmodial activity similar to that of unmodified Hit A. This allowed us to identify the PfPYK-1 kinase and the PfRab6 GTP-ase as potential targets of Hit A.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/química , Plasmodium falciparum , Relação Estrutura-Atividade , Malária Falciparum/tratamento farmacológico , Eritrócitos
8.
ACS Infect Dis ; 10(4): 1185-1200, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38499199

RESUMO

New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Íons/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/metabolismo
9.
Bioorg Chem ; 146: 107249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493638

RESUMO

One of the deadliest infectious diseases, malaria, still has a significant impact on global morbidity and mortality. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the fourth step in de novo pyrimidine nucleotide biosynthesis and has been clinically validated as an innovative and promising target for the development of novel targeted antimalarial drugs. PfDHODH inhibitors have the potential to significantly slow down parasite growth at the blood and liver stages. Several PfDHODH inhibitors based on various scaffolds have been explored over the past two decades. Among them, triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based derivatives known as DSM compounds showed tremendous potential as novel antimalarial agents, and one of the triazolopyrimidine-based compounds (DSM265) was able to reach phase IIa clinical trials. DSM compounds were synthesized as PfDHODH inhibitors with various substitutions based on structure-guided medicinal chemistry approaches and further optimised as well. For the first time, this review provides an overview of all the synthetic approaches used for the synthesis, alternative synthetic routes, and novel strategies involving various catalysts and chemical reagents that have been used to synthesize DSM compounds. We have also summarized SAR study of all these PfDHODH inhibitors. In an attempt to assist readers, scientists, and researchers involved in the development of new PfDHODH inhibitors as antimalarials, this review provides accessibility of all synthetic techniques and SAR studies of the most promising triazolopyrimidines, isoxazolopyrimidines, and pyrrole-based PfDHODH inhibitors.


Assuntos
Antimaláricos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Antimaláricos/química , Plasmodium falciparum , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Pirróis/farmacologia , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
10.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543034

RESUMO

The emergence and spread of drug-resistant Plasmodium falciparum parasites shed a serious concern on the worldwide control of malaria, the most important tropical disease in terms of mortality and morbidity. This situation has led us to consider the use of peptide-alkoxyamine derivatives as new antiplasmodial prodrugs that could potentially be efficient in the fight against resistant malaria parasites. Indeed, the peptide tag of the prodrug has been designed to be hydrolysed by parasite digestive proteases to afford highly labile alkoxyamines drugs, which spontaneously and instantaneously homolyse into two free radicals, one of which is expected to be active against P. falciparum. Since the parasite enzymes should trigger the production of the active drug in the parasite's food vacuoles, our approach is summarized as "to dig its grave with its fork". However, despite promising sub-micromolar IC50 values in the classical chemosensitivity assay, more in-depth tests evidenced that the anti-parasite activity of these compounds could be due to their cytostatic activity rather than a truly anti-parasitic profile, demonstrating that the antiplasmodial activity cannot be based only on measuring antiproliferative activity. It is therefore imperative to distinguish, with appropriate tests, a genuinely parasiticidal activity from a cytostatic activity.


Assuntos
Antimaláricos , Citostáticos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Citostáticos/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Peptídeos/farmacologia , Peptídeos/uso terapêutico
11.
Cell Chem Biol ; 31(4): 729-742.e13, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38492573

RESUMO

The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors. Derivatization of XL888's scaffold led to the development of Tropane 1, as a PfHsp90-selective binder with nanomolar affinity. Hsp90 inhibitors exhibit anti-Plasmodium activity against the liver, asexual blood, and early gametocyte life stages. Thermal proteome profiling was implemented to assess PfHsp90-dependent proteome stability, and the proteasome-the main site of cellular protein recycling-was enriched among proteins with perturbed stability upon PfHsp90 inhibition. Subsequent biochemical and cellular studies suggest that PfHsp90 directly promotes proteasome hydrolysis by chaperoning the active 26S complex. These findings expand our knowledge of the PfHsp90-dependent proteome and protein quality control mechanisms in these pathogenic parasites, as well as further characterize this chaperone as a potential antimalarial drug target.


Assuntos
Antimaláricos , Plasmodium falciparum , Plasmodium falciparum/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Antimaláricos/química , Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares/metabolismo
12.
J Cell Biochem ; 125(3): e30533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345373

RESUMO

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Malária/tratamento farmacológico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Resistência a Medicamentos , Ácido Fólico
13.
ACS Infect Dis ; 10(3): 1000-1022, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38367280

RESUMO

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Assuntos
Antimaláricos , Malária Falciparum , Tiazóis , Humanos , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Cloroquina , Antimaláricos/farmacologia , Antimaláricos/química
14.
BMC Complement Med Ther ; 24(1): 79, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326823

RESUMO

BACKGROUND: Chemotherapies target the PfEMP-1 and PfPKG proteins in Plasmodium falciparum, the parasite that causes malaria, in an effort to prevent the disease's high fatality rate. This work identified the phytochemical components of Nauclea latifolia roots and docked the chemical compounds against target proteins, and examined the in vivo antiplasmodial effect of the roots on Plasmodium berghei-infected mice. METHODS: Standard protocols were followed for the collection of the plant's roots, cleaning, and drying of the roots, extraction and fraction preparation, assessment of the in vivo antiplasmodial activity, retrieval of the PfEMP-1 and PfPKG proteins, GCMS, ADME, and docking studies, chromatographic techniques were employed to separate the residual fraction's components, and the Swis-ADME program made it possible to estimate the drug's likeness and pharmacokinetic properties. The Auto Dock Vina 4.2 tool was utilized for molecular docking analysis. RESULTS: The residual fraction showed the best therapeutic response when compared favorably to amodiaquine (80.5%) and artesunate (85.1%). It also considerably reduced the number of parasites, with the % growth inhibition of the parasite at 42.8% (D2) and 83.4% (D5). Following purification, 25 compounds were isolated and characterized with GCMS. Based on their low molecular weights, non-permeation of the blood-brain barrier, non-inhibition of metabolizing enzymes, and non-violation of Lipinski's criteria, betulinic and ursolic acids were superior to chloroquine as the best phytochemicals. Hence, they are lead compounds. CONCLUSION: In addition to identifying the bioactive compounds, ADME, and docking data of the lead compounds as candidates for rational drug design processes as observed against Plasmodium falciparum target proteins (PfEMP-1 and PfPKG), which are implicated in the pathogenesis of malaria, the study has validated that the residual fraction of N. latifolia roots has the best antiplasmodial therapeutic index.


Assuntos
Antimaláricos , Malária , Rubiaceae , Triterpenos , Camundongos , Animais , Antimaláricos/química , 60576 , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Malária/tratamento farmacológico , Malária/parasitologia , Triterpenos/farmacologia , Plasmodium falciparum , Rubiaceae/química
15.
Cell Commun Signal ; 22(1): 139, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378659

RESUMO

BACKGROUND: Malaria remains a global health burden, and the emergence and increasing spread of drug resistance to current antimalarials poses a major challenge to malaria control. There is an urgent need to find new drugs or strategies to alleviate this predicament. Celastrol (Cel) is an extensively studied natural bioactive compound that has shown potentially promising antimalarial activity, but its antimalarial mechanism remains largely elusive. METHODS: We first established the Plasmodium berghei ANKA-infected C57BL/6 mouse model and systematically evaluated the antimalarial effects of Cel in conjunction with in vitro culture of Plasmodium falciparum. The potential antimalarial targets of Cel were then identified using a Cel activity probe based on the activity-based protein profiling (ABPP) technology. Subsequently, the antimalarial mechanism was analyzed by integrating with proteomics and transcriptomics. The binding of Cel to the identified key target proteins was verified by a series of biochemical experiments and functional assays. RESULTS: The results of the pharmacodynamic assay showed that Cel has favorable antimalarial activity both in vivo and in vitro. The ABPP-based target profiling showed that Cel can bind to a number of proteins in the parasite. Among the 31 identified potential target proteins of Cel, PfSpdsyn and PfEGF1-α were verified to be two critical target proteins, suggesting the role of Cel in interfering with the de novo synthesis of spermidine and proteins of the parasite, thus exerting its antimalarial effects. CONCLUSIONS: In conclusion, this study reports for the first time the potential antimalarial targets and mechanism of action of Cel using the ABPP strategy. Our work not only support the expansion of Cel as a potential antimalarial agent or adjuvant, but also establishes the necessary theoretical basis for the development of potential antimalarial drugs with pentacyclic triterpenoid structures, as represented by Cel. Video Abstract.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/uso terapêutico , Espermidina/farmacologia , Camundongos Endogâmicos C57BL , Malária/tratamento farmacológico , Malária/parasitologia , Triterpenos Pentacíclicos/uso terapêutico
16.
Eur J Med Chem ; 267: 116163, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290351

RESUMO

The World Health Organization (WHO) estimated that there were 247 million malaria cases in 2021 worldwide, representing an increase in 2 million cases compared to 2020. The urgent need for the development of new antimalarials is underscored by specific criteria, including the requirement of new modes of action that avoid cross-drug resistance, the ability to provide single-dose cures, and efficacy against both assexual and sexual blood stages. Motivated by the promising results obtained from our research group with [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine derivatives, we selected these molecular scaffolds as the foundation for designing two new series of piperaquine analogs as potential antimalarial candidates. The initial series of hybrids was designed by substituting one quinolinic ring of piperaquine with the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine nucleus. To connect the heterocyclic systems, spacers with 3, 4, or 7 methylene carbons were introduced at the 4 position of the quinoline. In the second series, we used piperazine as a spacer to link the 1,2,4-triazolo[1,5-a]pyrimidine or pyrazolo[1,5-a]pyrimidine group to the quinoline core, effectively merging both pharmacophoric groups via a rigid spacer. Our research efforts yielded promising compounds characterized by low cytotoxicity and selectivity indices exceeding 1570. These compounds displayed potent in vitro inhibitory activity in the low nanomolar range against the erythrocytic form of the parasite, encompassing both susceptible and resistant strains. Notably, these compounds did not show cross-resistance with either chloroquine or established P. falciparum inhibitors. Even though they share a pyrazolo- or triazolo-pyrimidine core, enzymatic inhibition assays revealed that these compounds had minimal inhibitory effects on PfDHODH, indicating a distinct mode of action unrelated to targeting this enzyme. We further assessed the compounds' potential to interfere with gametocyte and ookinete infectivity using mature P. falciparum gametocytes cultured in vitro. Four compounds demonstrated significant gametocyte inhibition ranging from 58 % to 86 %, suggesting potential transmission blocking activity. Finally, we evaluated the druggability of these new compounds using in silico methods, and the results indicated that these analogs had favorable physicochemical and ADME (absorption, distribution, metabolism, and excretion) properties. In summary, our research has successfully identified and characterized new piperaquine analogs based on [1,2,4]triazolo[1,5-a]pyrimidine and pyrazolo[1,5-a]pyrimidine scaffolds and has demonstrated their potential as promising candidates for the development of antimalarial drugs with distinct mechanisms of action, considerable selectivity, and P. falciparum transmission blocking activity.


Assuntos
Antimaláricos , Malária Falciparum , Piperazinas , Quinolinas , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Plasmodium falciparum , Quinolinas/química , Malária Falciparum/tratamento farmacológico , Pirimidinas/química
17.
Chem Biodivers ; 21(2): e202301745, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192127

RESUMO

Many people around the world suffer from malaria, especially in tropical or subtropical regions. While malaria medications have shown success in treating malaria, there is still a problem with resistance to these drugs. Herein, we designed and synthesized some structurally novel benzotriazole-ß-lactams using 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid as a key intermediate. To synthesize the target molecules, the ketene-imine cycloaddition reaction was employed. First, The reaction of 1H-benzo[d][1,2,3]triazole with 2-bromoacetic acid in aqueous sodium hydroxide yielded 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid. Then, the treatment of 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid with tosyl chloride, triethyl amine, and Schiff base provided new ß-lactams in good to moderate yields.The formation of all cycloadducts was confirmed by elemental analysis, FT-IR, NMR and mass spectral data. Moreover, X-ray crystallography was used to determine the relative stereochemistry of 4a compound. The in vitro antimalarial activity test was conducted for each compound against P. falciparum K1. The IC50 values ranged from 5.56 to 25.65 µM. A cytotoxicity profile of the compounds at 200 µM final concentration revealed suitable selectivity of the compounds for malaria treatment. Furthermore, the docking study was carried out for each compound into the P. falciparum dihydrofolate reductase enzyme (PfDHFR) binding site to analyze their possible binding orientation in the active site.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/química , Simulação de Acoplamento Molecular , beta-Lactamas/farmacologia , beta-Lactamas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis/química , Acetatos , Relação Estrutura-Atividade
18.
PLoS One ; 19(1): e0296756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206944

RESUMO

The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/química , Ácido Linoleico , Ácido Oleico/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Malária/tratamento farmacológico , Misturas Complexas/farmacologia , Plasmodium berghei
19.
J Nat Prod ; 87(2): 315-321, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262446

RESUMO

Trichothecenes (TCNs) are a large group of tricyclic sesquiterpenoid mycotoxins that have intriguing structural features and remarkable biological activities. Herein, we focused on three TCNs (anguidine, verrucarin A, and verrucarol) and their ability to target both the blood and liver stages of Plasmodium species, the parasite responsible for malaria. Anguidine and verrucarin A were found to be highly effective against the blood and liver stages of malaria, while verrucarol had no effect at the highest concentration tested. However, these compounds were also found to be cytotoxic and, thus, not selective, making them unsuitable for drug development. Nonetheless, they could be useful as chemical probes for protein synthesis inhibitors due to their direct impact on parasite synthesis processes.


Assuntos
Antimaláricos , Malária , Plasmodium , Tricotecenos , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Tricotecenos/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Fígado , Plasmodium falciparum
20.
J Biomol Struct Dyn ; 42(4): 1655-1669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37194452

RESUMO

Many natural products have been shown to possess antiplasmodial activities, but their protein targets are unknown. This work employed molecular docking and molecular dynamics simulations to explore the inhibitory activity of some antiplasmodial natural products against wild-type and mutant strains of Plasmodium falciparum dihydrofolate reductase (PfDHFR). From the molecular docking study, 6 ligands preferentially bind at the active site of the DHFR domain with binding energies ranging from -6.4 to -9.5 kcal/mol. Interactions of compounds with MET55 and PHE58 were mostly observed in the molecular docking study. From the molecular dynamics study, the binding of 2 of the ligands-nitidine and oplodiol-was observed to be stable against all tested strains of PfDHFR. The average binding free energy of oplodiol in complex with the various PfDHFR strains was -93.701 kJ/mol whereas that of nitidine was -106.206 kJ/mol. The impressive in silico activities of the 2 compounds suggest they could be considered for development as potential antifolate agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Benzofenantridinas , Produtos Biológicos , Naftóis , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/química , Simulação de Acoplamento Molecular , Tetra-Hidrofolato Desidrogenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...